Lithium in Organic Chemistry

Reporter: Pan Hu Date: 2014.5.5 • Introduction of lithium

- Stable lithium complex with organic ligand
- Organolithium in organic reactions
- Summary

Lithium

Discovered in 1817 in Sweden. 0.0065% in Earth. Isotopes: ⁶Li(7.42%) , ⁷Li(92.58%). Lightest Metal.

Natural Lithium Minerals:

Comsuption of Lithium

Lithium Bromide: an alternative of freon.

Lithium Battery

Nuclear Reactor

Since 2004, lithium comsuption raises 25% annual. It is possible that lithium consumption will reach to 260,000 ton.

Production of Lithium

• Chanllenges:

Majority of lithium resource exist in salt lakes not minerals.

Lithium Complex with Organic Ligand

• In 1887, F.A.Gooch sought to effect the seperation of lithium chloride from the chlorides of sodium and potassium by means of amyl **alcochol**(pentanol).

J. Am. Chem. Soc., 1908, 30 (7), 1104–1115.

Lithium Extraction Process

• After over 100 years development, people have discovered many kinds of organic ligands with lithium selectivity.

• All these organic ligands are used to the extraction process of lithium.

Chem. Rev. 1991, 91, 137-164.

Lithium Complex

Lithium ion compounds exhibit coordination numbers varying from 2-8. But the most selective Li⁺ ionophores exhibit 4-fold tetrahedral coordination and 5-fold square pyramidal coordination.

4-fold tetrahedral

5-fold square pyramidal

Organic Ligands

- 1 carboxylic acid
- 2 amines
- 3 ethers, ketones, alcohols
- 4 phosphates(shortest Li-Ligand distance)
- 5 watercarboxylic acid

Organolithium in Organic Reactions

• 1 Strong Base

It is well known that organolithium compounds can be used as strong organic base such as n-BuLi, LDA, LiHMDS...

R-H + n-BuLi → R-Li + BuH

R-X + n-BuLi Halogen Lithium R-Li + BuX

• 2 Counterion of Reduction reagent LiAIH₄, LiBH₄

Unlike organomagnessium reagent, organolithium reagent is not introduced into product because of its poor nucleophilicity.

Cross Coupling reactions of Organolithium

well established methods:

transition metal catalyst

R¹-X + R²-Li → R¹-R²

• Chanllenges:

rapid lithium-halogen exchange

Homocoupling.

Poor nucleophilicity of organolithium reagents.

In 1979, Murahashi reported a cross coupling reaction of alkenyl halide and alkyl lithium.But reflux teperature(benzene) was required.

J. Org. Chem.44,2408–2417 (1979).

R¹-X + R²-Li

Recently, Ben L. Feringa's group reported a Direct catalytic cross-coupling of organolithium compounds.

transition metal catalyst

 $R^{1}-R^{2}$

He use $Pd[P(t-Bu)_3]_2$ instead of $Pd(PPh_3)_4$, toluene instead of benzene. The reaction occurs at room temperature.

And good functional group tolerance, even unprotected alcohol could give moderate yield.

transition metal catalyst

R¹-R²

R¹-X + R²-Li

Nature Chemistry, 2013, 5(8): 667-672.

Addition to Ketones

Table 3: Addition of organolithium (RLi) reagents to ketones 1a-1c in ChCl-based eutectic mixtures.^[a]

	$R^1 R^2$	+ 2 (R ³ Li	DESs RT, in air R ¹	H R ²	
	1a-c			2g-m		
entry	R ¹	R ²	R ³	DES	Yield	[%] of 2 ^[b]
1	o-(MeO)C ₆ H₄	Me	Bu	1ChCl/2Gly	2 g	71 ^[e]
2	o-(MeO)C ₆ H₄	Me	Bu	1ChCl/2H₂O	2g	82
3	o-(MeO)C ₆ H₄	Me	Bu	1ChCl/2EG	2g	60
4 ^[c]	Ph	Ph	Bu	1ChCl/2Gly	2h	75 (12)
5 ^[c]	Ph	Ph	Bu	1ChCl/2H ₂ O	2h	68 (9)
6	CH ₃ (CH ₂) ₂	Me	Bu	1ChCl/2Gly	2i	73
7	$CH_3(CH_2)_2$	Me	Bu	1ChCl/2H ₂ O	2i	85
8	o-(MeO)C ₆ H₄	Me	Ph	1ChCl/2Gly	2j	80
9	o-(MeO)C ₆ H₄	Me	Ph	1ChCl/2H ₂ O	2j	82
10	Ph	Ph	Ph	1ChCl/2Gly	2k	81
11	Ph	Ph	Ph	1ChCl/2H ₂ O	2k	85
12	CH ₃ (CH ₂) ₂	Me	Ph	1ChCl/2Gly	21	72
13	CH ₃ (CH ₂) ₂	Me	Ph	1ChCl/2H ₂ O	21	90
14 ^d	CH ₃ (CH ₂) ₂	Me	ethynyl	1ChCl/2H ₂ O	2 m	84

(nontoxic quaternary amonioum salt)

Angew. Chem. Int. Ed.2014, 53,1–6.

Future Works...

Control the reactivity of organolithium reagents.

all those cross coupling reactions require very slow addition of organolithium reagent(1ml--1h).

• Supress the rapid halogen-lithium exchange.

The mechanism of halogen-lithium exchange reaction remains unknow.("eat complex"?)

SUMMARY

- Lithium will become more and more important because of its application in energy.
- Organic legand will play an important role in lithium production.
- Organolithium reagent is a potential nucleophilic reagent for cross coupling reactions.

